

Federal Aviation Administration

DOT/FAA/AM-18/1 Office of Aerospace Medicine Washington, DC 20591

Identification and Quantification of 22 Benzodiazepines in Postmortem Fluids and Tissues using UPLC/MS/MS

Michael K. Angier Sunday R. Saenz Roxane M. Ritter Russell J. Lewis

May 2018

Final Report

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof.

This publication and all Office of Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute's publications website: http://www.faa.gov/go/oamtechreports

Technical Report Documentation Page

1. Report No. DOT/FAA/AM-18/1	2. Government Accession No.		3. Recipient's Catalog No.			
4. Title and Subtitle	1		5. Report Date			
Identification and Quantification o	f 22 Benzodiazepines in I	ostmortem	May 2018			
Fluids and Tissues using UPLC/M	S/MS		6. Performing Organization Code			
7. Author(s)			8. Performing Organization Report No).		
Angier MK, Saenz SR, Ritter RM,	and Lewis RJ					
9. Performing Organization Name and Address			10. Work Unit No. (TRAIS)			
FAA Civil Aerospace Medical Inst	titute					
P.O. Box 25082			11. Contract or Grant No.			
Oklahoma City, OK 73125						
12. Sponsoring Agency name and Address			13. Type of Report and Period Covere	ed		
Office of Aerospace Medicine						
Federal Aviation Administration						
800 Independence Ave., S.W.						
Washington, DC 20591			14. Sponsoring Agency Code			
15. Supplemental Notes						
16. Abstract						
Benzodiazepines, a class of drugs	known to cause central ne	rvous system	depression, are widely presci	ribed		
for a variety of different medical c	onditions such as anxiety,	insomnia, ar	id as a preoperative sedative in	n		
conjunction with anesthesia. In fac	t, four are listed in the top	100 most pr	escribed drugs. Although ther	re are		
many medicinal benefits with benz	zodiazepines, there are ma	ny impairing	side effects that can impact the	he		
Descereb Teem has developed and	validated a comprehensiv	viation Admi	the analysis of 22 honzodioz	ogy		
in postmortom fluids and tissues. T	The newly developed meth	e memou ion	high performance liquid	epines		
chromatography tandem mass spec	trometry (UPI C/MS/MS) and a single	- step "crash and shoot" extra	ction		
This new method reduces extraction	on time significantly redu) and a single	olume and eliminates	ction.		
derivatization steps necessary for c	commonly employed meth	ods involvin	g solid-phase extraction and			
GC/MS For each of the analytes t	the linear dynamic range of	encompasses	sub-therapeutic to toxic			
concentrations. This method prove	ed to be accurate and repro	ducible with	control values not exceeding	20%		
of the target concentration Analyti	es were stable over a 5-da	v period whe	enstored at 4° C as well as on	2070		
instrument post extraction Addition	onally all analytes were s	table after the	ree freeze/thaw cycles Ion			
suppression was evaluated in a var	iety of postmortem fluids	and tissues	Although there was minimal			
suppression in fluids there was su	noression observed in tiss	ules However	r this suppression affected the	e		
internal standard similarly: therefore	re quantitative reliability	was maintair	ned This newly developed	~		
UPLC/MS/MS method has been n	roven to be accurate and r	recise in the	identification and quantificati	on of		
22 benzodiazenines in postmortem	fluids and tissues		raentification and qualitificati	011 01		
47 Kashirata						
17. Rey Words Forensic Toxicology Postmortem	LC/MS/MS	Document is	atement available to the public through	oh the		
Benzodiazepines		Internet: www.faa.gov/go/oamtechreports/				
19. Security Classif. (of this report)	20. Security Classif. (of this page)		21. No. of Pages 22. Price	9		
Unclassified	Unclassified		19	<u></u>		
orm DOT F 1700.7 (8-72)			Reproduction of completed page au	thorized		

Contents

Introduction	1
Materials and Methods	1
Chemicals and Reagents	1
Ultra-performance liquid-chromatography-tandem mass spectrometric conditions	2
Calibration and control preparation	3
Sample preparation and extraction method	5
Results and Discussion	5
Conclusion	17
References	17

IDENTIFICATION AND QUANTIFICATION OF 22 BENZODIAZEPINES IN POSTMORTEM FLUIDS AND TISSUES USING UPLC/MS/MS

INTRODUCTION

Benzodiazepines, a class of drugs known to cause central nervous system depression, are widely prescribed for a variety of different medical conditions including: anxiety, insomnia, convulsion disorders, alcohol withdrawal, and as adjuncts to psychiatric conditions and surgical procedures.(1) While there are many important medicinal uses, benzodiazepines also have the potential for dependence and abuse. There are many impairing side effects such as drowsiness, confusion, dizziness, and lack of coordination.(2,3) Due to the potential impairment associated with these drugs, attempting divided-attention and/or complex activities such as operating a motor vehicle or piloting an aircraft can be especially dangerous.

The Federal Aviation Administration (FAA) is concerned with any drugs/pharmaceuticals used by those certified to operate an aircraft. When fatal civil aviation accidents occur, specimens such as blood, urine, liver, kidney, muscle, heart, brain, and other tissues are submitted to the FAA's Forensic Toxicology Laboratory for analysis. Identification of benzodiazepines and other drugs can provide additional information for accident investigators to aid in their investigations.

Over a 10-year period, 2007-2016, 121 cases out of 2582 fatal aviation accidents were found to be positive for one or more benzodiazepines. Since benzodiazepines are some of the most highly prescribed drugs in America, four of these being in the top 100 most prescribed drugs,(4) it is necessary to have an analytical method capable of identifying a majority of benzodiazepines and corresponding metabolites in postmortem fluids and tissues in an efficient manner.

There are numerous research articles that describe the analysis of multiple benzodiazepines in blood, urine, serum, and even meconium.(5-9) However, none have been applied to postmortem fluids and tissues. In this paper, we describe a simplified extraction and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) separation and quantification method for 22 benzodiazepine compounds in postmortem fluids and tissues. The 22 compounds included in this method encompass all of the benzodiazepines we would expect to encounter in our laboratory. Validation of the method was conducted using the Scientific Working Group for Forensic Toxicology (SWGTOX) guidelines and recommendations.(10) We believe this is the first published method that combines a simple "crash and shoot" extraction with UPLC/MS/MS for the analysis of postmortem fluids and tissues.

MATERIALS AND METHODS

Chemicals and Reagents

Benzodiazepine methanolic standards were purchased from Cerilliant (Cerilliant Corp., Round Rock, TX), Lipomed (Arlesheim, Switzerland), and LGC (Lukenwalde, Germany) at 1.00 mg/mL. Methanolic standards were 7-amino-clonazepam, 7-amino-flunitrazepam, alpha hydroxy-alprazolam, alpha hydroxy-midazolam, alprazolam, bromazepam, chlordiazepoxide, clonazepam, desalkylflurazepam, diazepam, estazolam, flunitrazepam, flurazepam, norchlordiazepoxide, nordiazepam, oxazepam, prazepam, temazepam, and triazolam. Deuterated analogues were purchased from Cerilliant, Lipomed, and LGC at 1.0 mg/mL or 100 µg/mL. The deuterated methanolic standards were 7-amino-clonazepam-d₄, 7-amino-flunitrazepam-d₇, alpha hydroxy-alprazolam-d₅, alpha hydroxy-midazolam-d₄, alprazolam-d₅, bromazepam-d₄, chlordiazepoxide-d₅, clonazepam-d₅, estazolam-d₅, flunitrazepam-d₃, lorazepam-d₄, midazolam-d₄, nitrazepam-d₅, norchlordiazepoxide-d₅, nordiazepam-d₅, oxazepam-d₅, prazepam-d₅, temazepam-d₅, desalkylflurazepam-d₄, flurazepam-d₄, and triazolam-d₄. Additionally, lorazepam, oxazepam, and temazepam were purchased as

glucuronides at 100 µg/mL from Cerilliant. *Helix pomatia* (derived β-glucuronidase) was obtained from Sigma Aldrich (Sigma Aldrich, St. Louis, MO). Formic acid, sodium fluoride, LC/MS grade acetonitrile (ACN), isopropanol, and LC/MS grade methanol were purchased from Fisher (Fisher Scientific, Pittsburgh, PA). Double deionized (DI) water was obtained from a Millipore Direct Q-3 UV (Millipore, Continental Water Systems, El Paso, TX). Bovine blood was obtained from Country Home Meat Co. (Country Home Meat Co., Edmond, OK). Immediately upon collection, sodium fluoride and potassium oxalate were added to the blood and mixed to produce a final sodium fluoride/potassium oxalate concentration of 1.0% and 0.2% (w/v), respectively. Human certified negative urine was obtained from UTAK (UTAK Laboratories Inc., Valencia, CA). Serum (bovine) was purchased from Sigma Aldrich. All tissues used for the ion suppression study were obtained from negative cases set for disposal.

Mobile Phase A (MPA) was made with DI water and formic acid (999:1 v/v). Mobile Phase B (MPB) was made with LC/MS grade acetonitrile and formic acid (999:1 v/v). A needle wash solution at a 1:1:1:1 (v/v) ratio was prepared with DI water, LC/MS grade acetonitrile, LC/MS grade methanol, and isopropanol.

Ultra-performance liquid-chromatography-tandem mass spectrometric conditions

All analyses were performed utilizing a Waters Acquity I-class ultra-performance liquid chromatograph (UPLC) connected to a Waters Xevo TQ-S tandem mass spectrometer (MS/MS) (Waters Corporation, Milford, MA). Chromatographic separation was achieved using an Acquity UPLC BEH C_{18} column (2.1 x 100-mm, 1.7-µm; Waters Corporation, Milford, MA). The column manager temperature was set at 60°C. The UPLC was operated at a flow rate of 0.600 mL/min with a gradient program (Table 1). The autosampler temperature was set at 10°C and sample injection volume was 1 µL. The UPLC was equilibrated for approximately 30 minutes prior to use. Typical UPLC pressures observed for these conditions are approximately 9,300 psi.

Time	MPA %	MPB %
0.0	95	5
0.50	95	5
0.51	75	25
2.00	67	33
6.00	65	35
6.10	2	98
7.10	95	5
8.00	95	5

Table 1. Gradient Program

*MPA: DI water with 0.1% FA; MPB: acetonitrile with 0.1% FA

The mass spectrometer portion of the UPLC/MS/MS system was manually optimized for each individual benzodiazepine compound. The source temperature was set at 150°C, capillary voltage at 0.6 kV, desolvation temperature at 550°C, desolvation gas flow at 1000 L/hr, cone flow 150 L/hr, nebulizer 7 bar, and collision flow of 0.15 mL/min. Various ionization modes were evaluated. ESI+ mode was found to provide maximum ionization. Optimized retention times, precursor (parent) and product (daughter) ions, cone voltages, and collision energies for each analyte are listed in Table 2.

There are three criteria set by our laboratory that must be met before an analyte can be reported as positive by UPLC/MS/MS. An analyte's product ions must have a minimum signal-to-noise ratio of 10 (quant ion) and 3 (confirmation ion), a retention time \pm 5% of the average calibrator retention time, and product ion ratio \pm 20% of the average calibrator product ion ratio.

Table 2. Retention times and MS	parameters for the benzodiazepines.
---------------------------------	-------------------------------------

Compound	Retention Time (min)	Cone Voltage (V)	Precursor Ion (m/z)	Product Ions (m/z)	Collision Energy (CE)
7-aminoclonazepam	1.19	16	286.0	120.9* 222.1	30 24
7-aminoclonazepam-d ₄	1.18	44	290.1	120.9* 254.1	32 18
7-aminoflunitrazepam	1.31	20	284.1	135.0* 226.8	26 24
7-aminoflunitrazepam-d7	1.30	32	291.1	138.0* 230.1	26 30
Norchlordiazepoxide	1.35	32	286.1	227.0* 241.1	22 14
Norchlordiazepoxide-d ₅	1.34	26	291.1	232.1* 246.1	22 14
Chlordiazepoxide	1.44	20	300.1	227.1 283.1*	26 14
Chlordiazepoxide-d ₅	1.43	20	305.2	232.1* 288.1	26 14
Alpha OH-Midazolam	1.68	14	341.9	168.0 202.9*	38 24
Alpha OH-Midazolam-d4	1.67	32	346.0	168.0 202.9*	38 26
Midazolam	1.69	34	326.0	222.9 291.1*	36 24
Midazolam-d ₄	1.68	30	330.0	226.9 295.1*	30 26
Flurazepam	1.74	40	388.2	288.1 315.1*	24 22
Flurazepam-d ₄	1.72	40	392.2	292.0 319.1*	25 24
Bromazepam	1.86	20	315.9	182.0* 209.0	28 24
Bromazepam-d ₄	1.84	10	319.9	186.0*	32 26
Nitrazepam	2.39	34	282.0	180.0 236.0*	36
Nitrazepam-d ₅	2.37	26	287.1	185.0 241.1*	34 24
Alpha OH-Alprazolam	2.50	36	324.9	279.1 297.1*	22 24
Alpha OH-Alprazolam-d₅	2.47	38	330.2	284.1 302.1*	22 26
Oxazepam	2.60	20	287.1	104.1 269.1*	32 14
Oxazepam-d ₅	2.57	20	292.1	246.1* 274.1	20 14
Clonazepam	2.66	22	315.9	214.0 270.0*	38 24
Clonazepam-d ₄	2.64	20	320.0	217.9 274.1*	36 24

*Transition ion used for quantification.

Compound	Retention Time (min)	Cone Voltage (V)	Precursor Ion (m/z)	Product Ions (m/z)	Collision Energy (CE)
Estazolam	2.67	26	295.1	205.1 267.1*	40 22
Estazolam-d₅	2.64	22	300.1	210.0 272.0*	38 22
Lorazepam	2.77	20	320.9	229.1 274.9*	28 20
Lorazepam-d ₄	2.75	18	327.0	235.1 280.9*	30 20
Nordiazepam	2.89	30	271.0	139.9* 165.0	28 28
Nordiazepam-d ₅	2.84	18	276.1	140.1* 165.0	26 26
Alprazolam	2.98	30	308.9	204.9 281.1*	40 26
Alprazolam-d ₅	2.94	40	314.0	279.2 286.1*	26 26
Flunitrazepam	3.04	34	314.1	239.2 268.1*	32 24
Flunitrazepam–d ₃	3.02	22	317.0	242.1 271.1*	34 26
Desalkylflurazepam	3.11	40	289.2	165.1 226.1*	25 25
Desalkylflurazepam-d ₄	3.08	40	293.1	149.8 230.0*	30 28
Triazolam	3.17	24	342.9	238.9 308.0*	40 24
Triazolam-d₄	3.14	40	346.9	243.0 312.1*	40 24
Temazepam	3.39	38	301.0	177.1 254.9*	38 20
Temazepam-d₅	3.35	20	306.0	177.1 260.1*	38 18
Diazepam	4.16	32	285.0	153.9* 193.1	26 30
Diazepam-d₅	4.07	32	290.1	154.0* 198.0	26 30
Prazepam	6.56	44	325.1	139.9 271.0*	36 20
Prazepam-d ₅	6.55	24	330.0	140.1 276.1*	34 22

Table 2. Retention times and MS parameters... Continued

*Transition ion used for quantification.

Calibration and control preparation

Calibrators and controls were prepared using separate 1.00 mg/mL methanolic drug standards. All calibrators and controls were prepared using bovine whole blood. Calibration curves were prepared by serial dilution to produce concentrations ranging from 0.78 to 800 ng/mL, except for chlordiazepoxide and norchlordiazepoxide, which ranged from 0.78 to 1600 ng/mL. Controls were prepared at concentrations of 5, 50, 200, and 1000 ng/mL, covering low, medium, and high portions of the calibration curves and were used to determine the accuracy and precision of the method and for various analyte stability studies. A 1000 ng/mL working internal standard solution was prepared in DI water using 100 μ g/mL or 1.00 mg/mL methanolic deuterated drug standards. One hundred μ L of this working solution was used for each sample (100 ng total).

Select benzodiazepines are present in urine, to some degree, as glucuronide conjugates. Therefore, we hydrolyzed each postmortem urine specimen using the enzyme β -glucuronidase in order to identify those analytes as free-drug. A β -glucuronidase solution was prepared by the addition of a pH 5, 0.1 M acetate buffer to a lyophilized powder of β -glucuronidase, resulting in a 200,000 units/mL mixture. This β -glucuronidase solution was stored in a refrigerator at 4°C. Glucuronide controls, prepared as 100 ng/mL drug-glucuronide, were made from 100 µg/mL methanolic standards of lorazepam-, oxazepam-, and temazepam-glucuronide.

Quantification was achieved via an internal standard calibration procedure. Response factors for each compound were determined for every sample analyzed. The response factor was calculated by dividing the area of the analyte quant ion peak by the area of the internal standard quant ion peak. Calibration curves were derived by plotting the analyte/internal standard response factor versus the analyte concentration for each respective calibrator and determining the mathematical model that best fit the calibration data. These calibration curves were then used to determine the concentrations of each benzodiazepine in the prepared controls and biological specimens.

Sample preparation and extraction method

Calibrators, controls, and specimens were prepared using the following procedure. Tissue samples were prepared for homogenization by adding 1.00% NaF solution to the tissue sample in a 2:1 w:w (1% NaF solution:tissue) addition. Tissue samples were homogenized using an OMNI post-mounted mixer homogenizer (Omni International; Kennesaw, GA). To individual 13 x 100-mm polypropylene tubes, 0.5 mL aliquots of each calibrator, control, postmortem fluid, and 1.50 g aliquots of each tissue homogenate (0.5 g wet tissue) were transferred. To each tube, 100 μ L of 1000 ng/mL internal standard was added (100 ng total). Urine specimens were hydrolyzed by adding 50 μ L of β -glucuronidase (10,000 units) and 1 mL of pH 5 0.1 M acetate buffer to each urine sample and incubated for 2 h at 70°C. Two mL of ice cold ACN was added to each tube, capped, and thoroughly vortexed. The tubes were then centrifuged at 4000 x g for 10 minutes in a Thermo RC4 Centrifuge (Thermo Electron Corp.; Chateau-Gontier, France). Centrifugation removed the proteins and cellular debris from the samples. Once centrifuged, supernatants from each tube were transferred to 16 x 100-mm round bottom tubes. Two mL of DI water was added to each tube and vortexed. Three hundred μ L of the extract was transferred to a 450 μ L fill-volume, 0.2 μ m PVDF filter vial (2 mL size, Thomson; Oceanside, CA). The vials were transferred to the autosampler set at 10°C. All specimens were analyzed at one time to avoid inter-assay variations.

RESULTS AND DISCUSSION

The method developed and described herein is a "crash-and-shoot" extraction followed by the separation, identification, and quantitation of 22 benzodiazepines compounds using a UPLC/MS/MS. It was extensively validated following SWGTOX recommended guidelines. One half mL of fluids or 0.50 g tissue was used for analysis. Specimen proteins and particulate matter were precipitated following the addition of 2 mL ACN to each sample. Following centrifugation, samples were further purified using a 0.2 µm PVDF filter vial. This filtration step was effective in avoiding blockage of the UPLC column. UPLC columns are prone to clogging when used for postmortem specimen analysis, due to the small particle size associated with UPLC. UPLC separation was achieved

using a gradient flow (Table 1) with a total run time of 8 min. This gradient flow was effective in "washing" the column of fats and proteins, thus, providing a clean column for each run. This is very important when analyzing postmortem fluid and tissue specimens. A typical calibrator chromatogram is shown in Figure 1. The MS was manually optimized to produce the highest abundance of precursor and product ions. The optimized MS parameters and retention times for the benzodiazepines are listed in Table 2. This simple extraction method and UPLC separation is very fast compared to our previous solid phase extraction/derivatization protocol, which was time consuming and labor intensive. This new procedure cut the analysis time by more than 50% compared to our previous method.

Figure 1. A chromatogram of the 100 ng/mL calibrator. The peak identification are as follows: (1) 7-amino-clonazepam, (2) 7-amino-flunitrazepam, (3) norchlordiazepoxide, (4) chlordiazepoxide, (5) alpha hydroxy-midazolam, (6) midazolam, (7) flurazepam, (8) bromazepam, (9) nitrazepam, (10) alpha hydroxy-alprazolam, (11) oxazepam, (12) clonazepam, (13) estazolam, (14) lorazepam, (15) nordiazepam, (16) alprazolam, (17) flunitrazepam, (18) desalkylflurazepam, (19) triazolam, (20) temazepam, (21) diazepam, and (22) prazepam.

The limit of detection (LOD), limit of quantitation (LOQ), calibration model, and linear dynamic range (LDR) for the method was determined for each analyte. The calibration model for an analyte is the mathematical representation that best fits the correlation between the analyte/internal standard ratio and the analyte concentration. A linear regression, with 1/x weighting, provided the best mathematical fit for all analytes tested. A minimum of 8 calibrators was used to construct each calibration curve. The LDR for each analyte encompasses the benzodiazepine concentrations we expect to encounter in our laboratory. The correlation coefficients (r^2) for all curves exceeded 0.98. The LOD is the lowest concentration of the drug that meets the identification criterion described in the materials and methods section. The LOQ is the lowest concentration that meets the same criteria as the LOD, plus it has an experimentally determined value within \pm 20% of its target concentration. A summary of the LOD, LOQ, LDR, and r^2 for all 22 benzodiazepine analytes is displayed in Table 3.

Compound	LOD** (ng/mL)	LOQ (ng/mL)	LDR (ng/mL)	r ²
7-aminoclonazepam	1.56	3.13	3.13-400	0.999
7-aminoflunitrazepam	0.78	1.56	1.56-200	0.999
Norchlordiazepoxide	25	50	50-1600	0.988
Chlordiazepoxide	25	50	50-1600	0.995
Alpha OH-Midazolam	3.13	3.13	3.13-400	0.999
Midazolam	1.56	3.13	3.13-400	0.999
Flurazepam	1.56	3.13	3.13-400	0.999
Bromazepam	3.13	6.25	6.25-400	0.999
Nitrazepam	0.78	1.56	1.56-200	0.999
Alpha OH-Alprazolam	1.56	3.13	3.13-400	0.999
Oxazepam	1.56	3.13	3.13-400	0.999
Clonazepam	1.56	3.13	3.13-400	0.999
Estazolam	1.56	3.13	3.13-400	0.999
Lorazepam	3.13	3.13	3.13-400	0.999
Nordiazepam	1.56	3.13	3.13-400	0.999
Alprazolam	1.56	3.13	3.13-400	0.999
Flunitrazepam	0.78	1.56	1.56-200	0.999
Desalkylflurazepam	1.56	3.13	3.13-400	0.999
Triazolam	3.13	3.13	3.13-400	0.999
Temazepam	1.56	3.13	3.13-400	0.999
Diazepam	3.13	3.13	3.13-400	0.999
Prazepam	1.56	3.13	3.13-400	0.999

Table 3. LOD, LOQ, and LDR data for 22 benzodiazepines.*

* A blood matrix was used for all benzodiazepines in the determination of each analytical parameter above.

** Concentrations below 0.78 ng/mL were not examined.

Carryover was evaluated by analyzing a mobile phase blank injection following the highest calibrator. No carryover was observed for any analyte following the injection of the highest calibrator. Since we analyzed postmortem fluids and tissues with this method, we also injected a mobile phase blank between specimens to ensure no carryover occurred. No carryover was observed at any time throughout the validation process.

Accuracy and precision were evaluated. Accuracy, expressed as relative error (%E), was calculated by determining the difference between the target concentration and the measured concentration. Precision, closeness of individual measurements to one another, was expressed as the coefficient of variation (CV). Control values for Days 1, 2, 3, 4, and 5 were processed from calibration curves prepared fresh on each day. Controls were prepared at 5, 50, 200, and 1000 ng/mL in large lots to ensure a sufficient amount of each control was available for the entire accuracy, precision, and storage stability (refrigerated and freeze/thaw) study. The 5, 50, and 200 ng/mL controls were used for all benzodiazepines except chlordiazepoxide and norchlordiazepoxide. For these two analytes, the 50, 200, and 1000 ng/mL control levels were used, due to the higher therapeutic range of chlordiazepoxide.

The accuracy and precision for all control levels on each day were within 20% of the calculated value from Day 1. Norchlordiazepoxide was outside of 20% of the 1000 ng/mL target value on Day 5. This is likely due to an error in the initial control preparation. However, it is still considered precise due to the reproducibility of the calculated value over the 5 days. Outside of this control, the largest %E for all other analytes tested was 16%. Additionally, all CV were below 12%, which demonstrates the robustness of this new procedure. The accuracy and precision for each analyte over all 5 days is shown in Table 4.

Drug concentrations measured in actual case work must be within the LDR. If concentrations fall above the LDR, such values should not be reported. In such an instance, a specimen may require dilution. Therefore, we evaluated the dilution integrity of the benzodiazepines. Five 800 ng/mL controls were diluted 1:10. All dilutions were within 20% of the expected dilution concentration of 80 ng/mL.

Analyte stability was evaluated at refrigerator temperatures, multiple freeze/thaw cycles, and post-extraction conditions. Refrigerator stability of the benzodiazepines in whole bovine blood stored at 4°C was evaluated by analyzing the 5, 50, 200, and 1000 ng/mL controls, over a 5-day period. All analytes over this 5-day period were within 20% of the Day 1 concentrations, indicating short-term stability at 4°C. Even though the 1000 ng/mL norchlordiazepoxide was outside of the 20% of the target concentration on Day 5, it was only 14% above the Day 1 value. Freeze/thaw stability was evaluated by freezing multiple Day 1 controls, thawing all of the controls for 1 h on Day 2, analyzing 5 of each control level, refreezing all of the remaining tubes, and repeating this freeze/thaw cycle on Days 3 and 4; for a total of 3 freeze/thaw cycles. The freezer temperature was -20°C. All analyte concentrations remained within 20% of their target concentration through all 3 of the freeze/thaw cycles, except for 1000 ng/mL norchlordiazepoxide. However, this concentration was within 20% of the Day 1 control concentration. Post-extraction or on-instrument stability was determined by re-injecting Day 1 controls, left on the instrument at 10°C, on Days 2, 3, 4, and 5. All analytes were within 20% of Day 1 results for the full 5 days. A summary of the stability data is displayed in Tables 4, 5, and 6.

In urine, many benzodiazepines exist as glucuronide conjugates. Therefore, glucuronide controls were prepared and hydrolyzed to evaluate the efficiency of the β -glucuronidase hydrolysis procedure. Lorazepam, oxazepam, and temazepam were the only analytes commercially available as glucuronides. A 100 ng/mL glucuronide control was prepared for each of the analytes in urine, resulting in a free-drug concentration of 67 ng/mL for lorazepam and 62 ng/mL for oxazepam and temazepam. All controls were within 12% of the target concentrations, indicating efficient hydrolysis. Hydrolysis efficiency can be seen in Table 7.

Ion suppression/enhancement was determined by analyzing multiple analyte-spiked solvent samples and spiked post-extraction fluid and tissue specimens and comparing their response. Ion suppression/enhancement was evaluated for each analyte and its internal standard in 5 different sources of blood, urine, serum, liver, lung, muscle, brain, and kidney (each tissue type was a homogenous mixture of 5 separate tissues). No ion enhancement was observed for any specimen type tested. Although no criteria exist for the acceptance of ion suppression, SWGTOX recommendations state that ion suppression greater than 25% be further evaluated to ensure quantitative validation parameters are not negatively impacted. No significant ion suppression was observed for any analytes in blood, urine, or serum. However, ion suppression was observed for analytes in tissues, but similar suppression for the internal standard factored out any quantitative variation. Ion suppression, which can be seen in Tables 8 and 9, was calculated by taking the difference between the suppression greater than 25%. Incorporation of deuterated benzodiazepine analogues as internal standards eliminated concerns of possible matrix effects and allowed for accurate quantitation in specimen types other than blood while using a whole-blood calibration curve. However, caution should routinely be used when interpreting results from postmortem tissues, as putrefactive byproducts may cause ion suppression or enhancement.

Table 4. Accuracy and precision data and refrigerator stability.*

		Da	y 1		Da	Day 2			Day 3			ay 4		Da	Day 5		
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%E	Mean (ng/mL)	CV	%Е	
	5	5.6 ± 0.1	+2	+12	5.7 ± 0.4	+2	+14	5.5 ± 0.3	+6	+11	5.3 ±0.2	+4	+5	5.27 ± 0.08	+2	+5	
7-aminoclonazepam	50	49.8 ± 0.9	+2	0	49.8 ±0.5	+1	0	50 ± 0.9	+2	0	$48. \pm 2$	+3	0	50.2 ± 0.05	+1	0	
	200	198 ± 2	+1	-1	201 ± 2	+1	0	199 ± 3	+2	0	202 ± 6	+3	+2	204 ± 3	+1	+2	
	5	5.31 ± 0.08	+2	+6	5.6 ± 0.1	+2	+13	5.5 ± 0.1	+2	+10	5.2 ± 0.5	+9	+4	5.3 ± 0.2	+4	+5	
7-aminoflunitrazepam	50	49.3 ± 0.8	-1	-1	50.4 ± 0.5	+1	+1	49.6 ± 0.8	+2	-1	50 ± 1	+3	-1	49.1 ± 0.6	+1	-2	
	200	199.4 ± 0.8	+1	0	202.1 ± 0.8	0	+1	198 ± 3	+1	-1	200 ± 6	+3	0	200 ± 4	+2	0	
	50	47 ± 1	+2	-6	54.5 ± 0.8	+1	+9	55 ± 1	+2	+10	48 ± 3	+7	-4	46.6 ± 0.6	+1	-7	
Norchlordiazepoxide	200	198 ± 6	+3	-1	191 ± 2	+1	-4	188 ± 3	+1	-6	192 ± 10	+5	-4	196 ± 2	+1	-2	
1	1000**	1112 ± 24	+2	+12	1129 ± 16	+1	+13	1161 ± 16	+1	+16	1162 ± 15	+1	+16	1264 ± 24	+2	+26	
	50	46 ± 1	+2	-7	52.4 ± 0.6	+1	+5	48.1 ± 0.3	+1	-4	51 ± 2	+4	+2	53.3 ± 0.6	+1	+7	
Chlordiazepoxide	200	200 ± 1	+1	0	195 ± 2	+1	-3	193 ± 2	+1	-4	205 ± 3	+2	+3	188 ± 4	+2	-6	
	1000	1028 ± 13	+1	+3	1068 ± 10	+1	+7	1102 ± 19	+2	+10	1150 ± 9	+1	+15	1025 ± 9	+1	+3	
Alpha OH-Midazolam	5	5.2 ± 0.2	+3	+3	5.1 ± 0.2	+4	+2	5.1 ± 0.3	+5	+2	5.4 ± 0.2	+4	+8	5.3 ± 0.3	+5	+6	
	50	49.3 ± 0.8	+2	-1	50 ± 1	+2	0	50 ± 1	+2	0	50 ± 1	+2	-1	49.7 ± 0.5	+1	-1	
P	200	201 ± 3	+2	+1	198 ± 3	+1	-1	201 ± 2	+1	+1	197 ± 3	+1	-1	203 ± 2	+1	+2	
	5	5.20 ± 0.08	+2	+4	5.58 ± 0.3	+5	+12	5.5 ± 0.2	+4	+10	4.9 ± 0.3	+5	-2	5.7 ± 0.1	+2	+15	
Midazolam	50	48.9 ± 0.8	$+2^{-}$	-2	51.1 ± 0.6	+1	+2	50.9 ± 0.3	+1	+2	50 ± 1	+3	-1	50.7 ± 0.8	$+2^{-}$	+1	
	200	197 ± 2	+1	-1	205 ± 2	+1	+3	204 ± 2	+1	+2	199 ± 3	+1	-1	206 ± 2	+1	+3	
	5	45 ± 02	+3	-11	450 ± 0.06	+1	-10	44 + 02	+4	-11	42 ± 01	+2	-17	53 + 05	+9	+5	
Flurazepam	50	499 + 09	+2	0	508 ± 04	+1	+2	50.1 ± 0.2	+2	0	502 ± 0.6	+1	0	51 ± 1	+2	+3	
	200	196 + 2	$+1^{-}$	-2	195 ± 1	+1	-3	201 + 2	+1	0	197 + 3	+2	-2	195 + 2	+1	-2	
	50	47.8 ± 0.4	+1	0	459 ± 09	+2	-8	46 + 1	+3	-8	468 ± 07	+2	_7	46 + 2	+1	-8	
Bromazepam	200	207 ± 1	-4	+3	197 ± 3	+1	-1	198 ± 1	+1	-1	40.0 ± 0.7 200 ± 3	+1	0	40 ± 2 202 ± 1	+1	+1	
	5	5.3 ± 0.1	+3	+6	5.46 ± 0.08	+2	+9	5.3 ± 0.3	+5	+6	5.2 ± 0.2	+4	+4	5.3 ± 0.1	+2	+5	
Nitrazepam	50	50.5 ± 0.8	+2	+1	50.5 ± 0.8	+2	+1	49.3 ± 0.6	+1	-1	50 ± 2	+3	-1	49.6 ± 0.8	+2	-1	
1	200	201 ± 1	+1	0	204 ± 2	+1	+2	2000 ± 1	+1	0	199 ± 2	+1	-1	199 ± 1	+1	-1	
	5	4.7 + 0.2	+3	-5	5.7 ± 0.2	+4	+13	5.4 ± 0.3	+6	+9	4.8 ± 0.5	+10	-5	5.4 ± 0.4	+6	+9	
Alpha OH-Alprazolam	50	49.9 ± 0.9	+2	õ	50 + 1	+2	-1	50.5 ± 0.9	+2	+1	48 + 3	+6	-3	51 + 1	+3	+2	
· · · · · · · · · · · · · · · · · · ·	200	208 ± 2	$+1^{-}$	+4	200 ± 3	+2	0	201 ± 2	+1	+1	196 ± 3	+2	-2	200 ± 2	+1	0	
	5	5.5 ± 0.3	+5	+9	5.1 ± 0.4	+8	+3	5.2 ± 0.3	+5	+5	4.9 ± 0.2	+5	0	5.4 ± 0.3	+5	+9	
Oxazepam	50	49.7 ± 0.5	+1	-1	50.5 ± 0.8	+2	+1	49.1 ± 0.9	+2	-2	50 ± 1	+2	-1	50.6 ± 0.7	+1	+1	
· · · · r · ·	200	202 ± 2	+1	+1	206 ± 5	+2	+3	198 ± 1	+1	-1	196 ± 4	+2	-2	201 ± 3	+1	0	

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds. ** Day 5 value outside 20% of target value, but within 20% of the value calculated on Day 1. Deviation is likely due to preparation error.

Table 4.	Accuracy	and	precision	data	Continued
----------	----------	-----	-----------	------	-----------

		Da	iy 1		Day	Day 2			у 3		Da	ay 4		Da	Day 5		
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%E	Mean (ng/mL)	CV	%E	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	
	5	5.4 ± 0.2	+3	+8	5.7 ± 0.3	+5	+14	5.1 ± 0.2	+3	+2	5.6 ± 0.3	+5	+13	5.6 ± 0.2	+3	+12	
Clonazepam	50	49.2 ± 0.7	+2	-2	51 ± 1	+2	+3	51 ± 1	+2	+2	48.5 ± 0.8	+3	-3	49.7 ± 0.8	+2	-1	
	200	200 ± 3	+1	0	204 ± 2	+1	+2	205 ± 1	+1	+3	199 ± 2	+3	-2	199 ± 2	+1	-1	
	5	5.5 ± 0.3	+5	+10	5.5 ± 0.4	+6	+11	5.0 ± 0.5	+10	+1	5.0 ± 0.4	+7	0	4.9 ± 0.3	+6	-3	
Estazolam	50	49 ± 1	+2	-3	49 ± 1	+3	-2	50 ± 1	+3	0	49 ± 1	+2	-1	49.4 ± 0.6	+1	-1	
	200	200 ± 2	+1	0	201 ± 1	+1	+1	202 ± 3	+2	+1	191 ± 3	+2	-5	198 ± 2	+1	-1	
	5	5.4 ± 0.4	+7	+8	5.8 ± 0.2	+4	+15	5.3 ± 0.1	+3	+5	5.4 ± 0.2	+5	+8	5.6 ±0.3	+5	+12	
Lorazepam	50	49 ± 2	+3	-2	48.0 ± 0.8	+2	-4	48.6 ± 0.6	+1	-3	48.9 ± 0.7	+1	-2	49.5 ± 0.5	+1	-1	
	200	202 ± 2	+1	+1	201 ± 4	+2	0	200 ± 2	+1	0	197 ± 5	+3	-2	201 ± 3	+2	0	
	5	5.0 ± 0.1	+3	0	5.3 ± 0.2	+4	+6	5.4 ± 0.1	+2	+8	5.4 ± 0.3	+6	+7	5.0 ± 0.4	+7	0	
Nordiazepam	50	50.2 ± 0.9	+2	0	50.5 ± 0.9	+2	+1	50.3 ± 0.8	+2	+1	50 ± 2	+3	0	49.6 ± 0.7	+1	-1	
-	200	203 ± 2	+1	+1	198.7 ± 0.7	0	-1	200 ± 2	+1	0	202 ± 2	+1	+1	199 ± 3	+2	-1	
	5	5.4 ± 0.2	+3	+7	5.3 ± 0.1	+2	+6	5.6 ± 0.2	+4	+11	5.3 ± 0.6	+12	+7	5.0 ± 0.4	+7	+1	
Alprazolam	50	48.6 ± 0.5	+1	-3	49.9 ± 0.9	+2	0	50 ± 1	+2	0	50.8 ± 0.4	+1	+2	49 ± 1	+2	-1	
	200	197 ± 2	+1	-2	200 ± 2	+1	0	207 ± 3	+2	+3	200 ± 2	+1	0	198 ± 4	+2	-1	
	5	5.1 ± 0.2	+4	+3	5.3 ± 0.1	+3	+6	5.2 ± 0.2	+3	+4	5.1 ± 0.2	+3	+2	5.3 ± 0.1	+2	+6	
Flunitrazepam	50	50.1 ± 0.5	+1	0	50.1 ± 0.5	+1	0	50.1 ± 0.6	+1	0	48.7 ± 0.7	+1	-3	50.5 ± 0.5	+1	+1	
	200	201 ± 2	+1	+1	205 ± 1	+1	+2	203 ± 1	+1	+2	195 ± 2	+1	-2	201.8 ± 0.6	0	+1	
	5	4.6 ± 0.2	+5	-9	4.1 ± 0.1	+3	-18	4.5 ± 0.2	+5	-9	4.3 ± 0.2	+5	-14	4.6 ± 0.5	+10	-9	
Desalkylflurazepam	50	50.1 ± 0.8	+2	0	49.7 ± 0.9	+2	-1	49.6 ± 0.2	0	-1	50.2 ± 0.9	+2	0	50 ± 1	+2	0	
	200	173 ± 3	+2	-14	172 ± 1	+1	-14	171 ± 3	+2	-14	169 ± 2	+1	-15	173 ± 2	+1	-13	
	5	5.27 ± 0.1	+3	+5	5.6 ± 0.4	+7	+11	5.6 ± 0.2	+4	+7	5.3 ± 0.4	+7	+7	5.2 ± 0.3	+5	+4	
Triazolam	50	49.5 ± 0.6	+1	-1	49.6 ± 0.7	+1	-1	49.2 ± 0.3	+1	-2	50.3 ± 0.9	+2	+1	50.7 ± 0.6	+1	+1	
	200	198.3 ± 0.7	0	-1	199 ± 2	+1	0	199 ± 1	+1	0	202 ± 2	+1	+1	200 ± 3	+1	0	
	5	5.08 ± 0.09	+2	+2	5.3 ± 0.1	+2	+7	5.13 ± 0.05	+1	+3	5.1 ± 0.1	+2	+2	5.11 ± 0.09	+2	+2	
Temazepam	50	49.1 ± 0.3	+1	-2	49.6 ± 0.3	+1	-1	49.7 ± 0.2	0	-1	50.0 ± 0.7	+1	0	49.6 ± 0.2	0	-1	
	200	200.2 ± 0.4	0	0	199.9 ± 0.6	0	0	201 ± 1	+1	0	202 ± 3	+1	+1	201 ± 2	+1	0	
	5	5.3 ± 0.1	+2	+6	5.64 ± 0.07	+1	+13	5.41 ± 0.04	+1	+7	5.4 ± 0.2	+4	+8	5.36 ± 0.09	+2	+7	
Diazepam	50	50.4 ± 0.5	+1	+1	50.3 ± 0.4	+1	+1	50.2 ± 0.4	+1	0	49.8 ± 0.8	+2	0	50.3 ± 0.2	0	+1	
-	200	200.5 ± 0.7	0	0	201.7 ± 0.7	0	+1	199.9 ± 0.5	0	0	202 ± 2	+1	+1	203 ± 1	+1	+2	
	5	5.3 ± 0.1	+3	+6	5.65 ± 0.07	+1	+13	5.20 ± 0.04	+1	+4	5.6 ± 0.4	+7	+11	5.30 ± 0.05	+1	+6	
Prazepam	50	50.6 ± 0.7	+1	+1	50.6 ± 0.9	+2	$+1^{-1}$	50.4 ± 0.8	+2	+1	50 ± 2	+4	-1	49.9 ± 0.4	+1	0	
<u>.</u>	200	203 ± 2	+1	+1	205 ± 3	+1	+3	208 ± 4	+2	+4	198 ± 8	+4	-1	201 ± 2	+1	0	

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds.

Table 5. Freeze/tha	w stability.
---------------------	--------------

		Da	y 1		Da	y 2		Da	iy 3		Da	Day 4			
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%E	Mean (ng/mL)	CV	%Е		
	5	5.6 ± 0.1	+2	+12	6.4 ± 0.4	+6	+28	5.6 ± 0.4	+8	+13	5.77 ± 0.09	+2	+15		
7-aminoclonazepam	50	49.8 ± 0.9	+2	0	50 ± 1	+3	-1	49.4 ± 0.6	+1	+1	49 ± 2	+4	-1		
	200	198 ± 2	+1	-1	199 ± 3	+2	0	201 ± 4	+2	0	201 ± 5	+2	+1		
	5	5.31 ± 0.08	+2	+6	6.7 ± 0.3	+4	+34	5.8 ± 0.1	+2	+16	5.4 ± 0.3	+5	+9		
7-aminoflunitrazepam	50	49.3 ± 0.8	-1	-1	51 ± 1	+2	+2	49 ± 1	+2	-2	49 ± 1	+2	-3		
	200	199.4 ± 0.8	+1	0	204 ± 3	+2	+2	203 ± 4	+2	+2	199 ± 7	+4	0		
	50	47 ± 1	+2	-6	54 ± 1	+3	+8	56 ± 1	+2	+12	51 ± 2	+4	+1		
Norchlordiazepoxide	200	198 ± 6	+3	-1	190 ± 5	+2	-5	189 ± 3	+1	-6	193 ± 9	+4	-3		
	1000**	1112 ± 24	+2	+12	1176 ± 15	+1	+18	1169 ± 28	+2	+17	1319 ± 31	+2	+32		
	50	47 ± 1	+2	-7	51 ± 1	+2	+3	48.6 ± 0.2	0	-3	50.8 ± 0.6	+1	+2		
Chlordiazepoxide	200	200 ± 1	+1	0	190 ± 2	+1	-5	193 ± 3	+2	-4	200 ± 4	+2	0		
-	1000	1028 ± 13	+1	+3	1094 ± 9	+1	+9	1094 ± 5	0	+9	1147 ± 31	+3	+15		
	5	5.2 ± 0.2	+3	+3	5.1 ± 0.3	+6	+3	5.1 ± 0.3	+6	+1	5.1 ± 0.3	+5	+2		
Alpha OH-Midazolam	50	49.3 ± 0.8	+2	-1	50 ± 1	+2	-1	49.9 ± 0.6	+1	0	49 ± 2	+4	-3		
1	200	201 ± 3	+2	+1	200 ± 4	+2	0	200 ± 1	+1	0	200 ± 4	+2	0		
	5	5.20 ± 0.08	+2	+4	5.7 ± 0.1	+2	+15	5.6 ± 0.1	+2	+11	5.1 ± 0.5	+10	+1		
Midazolam	50	48.9 ± 0.8	+2	-2	51.6 ± 0.6	+1	+3	50.8 ± 0.5	+1	+2	51 ± 1	+2	+1		
	200	197 ± 2	+1	-1	209 ± 3	+1	+4	207 ± 3	+1	+3	201 ± 2	+1	+1		
	5	4.5 ± 0.2	+3	-11	4.3 ± 0.1	+3	-14	4.2 ± 0.1	+2	-16	4.2 ± 0.1	+3	-16		
Flurazepam	50	49.9 ± 0.9	+2	0	50.1 ± 0.6	+1	0	49.1 ± 0.5	+1	-2	49.1 ± 0.3	+1	-2		
1	200	196 ± 2	+1	-2	196 ± 2	+1	-2	198 ± 4	+2	-1	198 ± 2	+1	-1		
~	50	47.8 ± 0.4	+1	0	46 + 1	+2	-8	46.5 ± 0.9	+2	-7	47 + 2	+3	-6		
Bromazepam	200	207 ± 1	-4	+3	199 ± 2	+1	-1	201 ± 2	+1	0	202 ± 5	+2	+1		
	5	5.3 ± 0.1	+3	+6	5.5 ± 0.1	+2	+11	5.3 ± 0.2	+3	+5	5.2 ± 0.1	+3	+3		
Nitrazepam	50	50.5 ± 0.8	+2	+1	50 ± 1	+2	0	49.6 ± 0.2	0	-1	50 ± 1	+2	-1		
	200	201 ± 1	+1	0	206 ± 3	+2	+3	199 ± 2	+1	0	199 ± 2	+1	0		
	5	4.7 ± 0.2	+3	-5	5.9 ± 0.5	+8	+18	5.3 ± 0.3	+5	+6	5.3 ± 0.9	+17	+6		
Alpha OH-Alprazolam	50	49.9 ± 0.9	+2	0	52.1 ± 0.9	+2	+4	50 ± 1	+2	0	48 ± 2	+5	-3		
	200	208 ± 2	+1	+4	201 ± 7	+3	0	205 ± 3	+1	+2	201 ± 2	+1	+1		
	5	5.5 ± 0.3	+5	+9	5.4 ± 0.2	+3	+8	5.5 ± 0.2	+4	+10	5.4 ± 0.4	+8	+8		
Oxazepam	50	49.7 ± 0.5	+1	-1	51.2 ± 0.5	+1	+2	49.5 ± 0.3	+1	-1	49 ± 2	+4	-2		
	200	202 ± 2	+1	+1	199 ± 1	+1	0	199 ± 2	+1	0	199 ± 5	+3	-1		

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds. ** 3^{rd} freeze/thaw cycle was outside 20% of target value, but within 20% of calculated Day 1 value. Deviation is likely due to preparation error.

Table 5. Freeze/thaw stability... Continued

		Da	y 1		Da	iy 2		Da	y 3		Da	Day 4			
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%E	Mean (ng/mL)	CV	%Е		
	5	5.4 ± 0.2	+3	+8	5.7 ± 0.3	+5	+14	5.2 ± 0.1	+2	+4	5.5 ± 0.4	+6	+10		
Clonazepam	50	49.2 ± 0.7	+2	-2	51.5 ± 0.8	+2	+3	50.4 ± 0.5	+1	+1	48 ± 1	+2	-4		
	200	200 ± 3	+1	0	204 ± 1	+1	+2	205 ± 1	+1	+3	199 ± 7	+3	-1		
	5	5.5 ± 0.3	+5	+10	5.6 ± 0.3	+6	+12	5.7 ± 0.3	+4	+14	5.4 ± 0.4	+8	+9		
Estazolam	50	49 ± 1	+2	-3	49.7 ± 0.7	+1	-1	50.9 ± 0.9	+2	+2	49 ± 2	+4	-2		
	200	200 ± 2	+1	0	200 ± 4	+2	0	200 ± 5	+2	0	201 ± 2	+1	0		
	5	5.4 ± 0.4	+7	+8	5.3 ± 0.4	+8	+5	5.2 ± 0.4	+7	+3	5.2 ± 0.5	+9	+5		
Lorazepam	50	49 ± 2	+3	-2	48 ± 1	+3	-4	48.8 ± 0.9	+2	-2	49 ± 2	+4	-2		
_	200	202 ± 2	+1	+1	198.8 ± 0.7	0	+1	199 ± 3	+2	-1	197 ± 2	+1	-1		
	5	5.0 ± 0.1	+3	0	5.4 ± 0.2	+4	+7	5.2 ± 0.1	+2	+4	5.2 ± 0.2	+3	+4		
Nordiazepam	50	50 ± 1	+2	0	49 ± 1	+2	-3	49.8 ± 0.7	+1	0	50.5 ± 0.9	+2	+1		
1	200	203 ± 2	+1	+1	200 ± 1	+1	0	200 ± 2	+1	0	2023 ± 2	+1	+1		
	5	5.4 ± 0.2	+3	+7	5.1 ± 0.4	+8	+3	5.4 ± 0.3	+6	+9	5.2 ± 0.7	+13	+5		
Alprazolam	50	48.6 ± 0.5	+1	-3	50.1 ± 0.5	+1	0	49.9 ± 0.5	+1	0	51 ± 2	+3	+3		
1	200	196.5 ± 2	+1	-2	200 ± 2	+1	0	204 ± 3	+1	+2	202 ± 6	+3	+1		
	5	5.1 ± 0.2	+4	+3	5.3 ± 0.1	+2	+7	5.3 ± 0.1	+3	+6	5.0 ± 0.2	+3	0		
Flunitrazepam	50	50.1 ± 0.5	+1	0	50.4 ± 0.4	+1	+1	50.1 ± 0.4	+1	0	49.1 ± 1	+2	-2		
_	200	201 ± 2	+1	+1	205.4 ± 0.9	0	+3	202.4 ± 1	+1	+1	196 ± 1	+1	-2		
	5	4.6 ± 0.2	+5	-9	4.02 ± 0.04	+1	-20	4.2 ± 0.2	+4	-15	4.2 ± 0.2	+4	-16		
Desalkylflurazepam	50	50.1 ± 0.8	+2	0	50.2 ± 0.8	+2	0	49.6 ± 0.5	+1	-1	48.5 ± 0.7	+1	-3		
, I	200	173 ± 3	+2	-14	173 ± 2	+1	-14	174 ± 2	+1	-13	169 ± 3	+2	-15		
	5	5.3 ± 0.2	+3	+5	5.5 ± 0.1	+2	+10	5.4 ± 0.2	+4	+8	5.7 ± 0.3	+5	+15		
Triazolam	50	49.5 ± 0.6	+1	-1	49.5 ± 0.6	+1	-1	49.3 ± 0.8	+2	-1	50.1 ± 0.6	-1	0		
	200	198.3 ± 0.7	0	-1	200 ± 2	+1	0	200 ± 3	+3	0	202 ± 2	-1	+1		
	5	5.08 ± 0.09	+2	+2	5.52 ± 0.07	+1	+10	5.14 ± 0.09	+2	+3	5.14 ± 0.07	+1	+3		
Temazepam	50	49.1 ± 0.3	+1	-2	49.8 ± 0.1	0	0	49.7 ± 0.3	+1	-1	49.7 ± 0.7	+1	-1		
1	200	200.2 ± 0.4	0	0	202 ± 1	+1	+1	200.9 ± 0.7	0	0	202 ± 2	+1	+1		
	5	5.3 ± 0.1	+2	+6	5.6 ± 0.1	+2	+12	5.4 ± 0.2	+3	+7	5.3 ± 0.3	+5	+7		
Diazepam	50	50.4 ± 0.5	$+1^{-}$	+1	50.4 ± 0.4	$+1^{-}$	+1	50.0 ± 0.3	+1	0	49.8 ± 0.3	+1	0		
1	200	200.5 ± 0.7	0	0	201 ± 1	0	+1	200.8 ± 0.5	0	0	199 ± 1	+1	0		
	5	5.3 ± 0.1	+3	+6	5.55 ± 0.06	+1	+11	5.3 ± 0.2	+3	+5	5.1 ± 0.3	+5	+5		
Prazepam	50	50.6 ± 0.7	+1	+1	50.9 ± 0.5	+1	+2	51.1 ± 0.4	+1	+2	48 ± 1	+3	-4		
1	200	203 ± 2	+1	+1	205 ± 2	+1	+3	209 ± 4	+2	+4	192 ± 6	+3	-4		

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds.

 Table 6.
 On-instrument stability.

		Day	у 1		Da	Day 2		Day	Day 3			Day 4			Day 5		
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	
	5	5.6 ± 0.1	+2	+12	5.3 ± 0.3	+5	+5	5.5 ± 0.3	+5	+10	5.5 ± 0.2	+4	+10	5.0 ± 0.2	+5	+1	
7-aminoclonazepam	50	49.8 ± 0.9	+2	0	49 ± 1	+2	-2	51.0 ± 0.8	+2	+2	49 ± 2	+4	-1	49 ± 2	+2	-2	
	200	198 ± 2	+1	-1	198 ± 2	+1	-1	199.7 ± 0.7	0	0	202 ± 3	+1	+1	200 ± 1	+1	0	
	5	5.31 ± 0.08	+2	+6	5.1 ± 0.2	+5	+1	5.3 ± 0.2	+4	+5	5.1 ± 0.2	+4	+3	4.9 ± 0.3	+6	-1	
7-aminoflunitrazepam	50	49.3 ± 0.8	-1	-1	48 ± 1	+2	-4	49.6 ± 0.7	+1	-1	49 ± 3	+5	-1	50 ± 1	+2	0	
_	200	199.4 ± 0.8	+1	0	196 ± 1	+1	-2	197 ± 4	+2	-2	201 ± 7	+4	0	201 ± 2	+1	0	
	50	47 ± 1	+2	-6	48 ± 1	+2	-4	47.3 ± 0.7	+2	-5	47.7 ± 0.7	+6	-5	46 ± 3	+6	-7	
Norchlordiazepoxide	200	198 ± 6	+3	-1	196 ± 2	+1	-2	199 ± 4	+2	0	196 ± 4	+2	-2	195 ± 3	+2	-3	
Ĩ	1000	1112 ± 24	+2	+12	1129 ± 20	+2	+13	1130 ± 24	+2	+13	1087 ± 24	+2	+9	1171 ± 14	+1	+17	
	50	46 ± 1	+2	-7	43.6 ± 0.7	+2	-13	42.7 ± 0.5	+1	-15	45.1 ± 0.9	+2	-10	45.5 ± 0.3	+1	-9	
Chlordiazepoxide	200	200 ± 1	+1	0	19 ± 2	+1	-5	187 ± 1	+1	-7	196 ± 3	+1	-2	196.6 ± 0.9	0	-2	
-	1000	1029 ± 13	+1	+3	1007 ± 8	+1	+1	993 ± 18	+2	-1	1002 ± 38	+4	0	1140 ± 9	+1	+14	
	5	5.2 ± 0.2	+3	+3	4.9 ± 0.5	+10	-3	5.0 ± 0.2	+3	+1	5.3 ± 0.2	+3	+5	5.0 ± 0.2	+3	-1	
Alpha OH-Midazolam	50	49.3 ± 0.8	+2	-1	50.1 ± 0.5	+1	0	52 ± 1	+3	+3	50 ± 1	+2	0	51 ± 1	+2	+2	
1	200	201 ± 3	+2	+1	200 ± 4	+2	0	205 ± 2	+1	+3	207 ± 5	+2	+4	209 ± 2	$^{+1}$	+4	
	5	5.20 ± 0.08	+2	+4	5.09 ± 0.05	+1	+2	5.3 ± 0.2	+3	+6	5.03 ± 0.24	+5	+1	5.42 ± 0.09	+2	+8	
Midazolam	50	48.9 ± 0.8	+2	-2	48.5 ± 0.4	+1	-3	50.3 ± 0.7	+1	+1	49 ± 2	+4	-3	51.9 ± 0.6	+1	+4	
	200	197 ± 2	+1	-1	196 ± 2	+1	-2	200 ± 1	+1	0	193 ± 4	+2	-4	207 ± 2	$^{+1}$	+4	
	5	4.5 ± 0.2	+3	-11	4.2 ± 0.1	+3	-16	4.1 ± 0.1	+2	-18	4.2 ± 0.1	+2	-17	5 ± 1	+20	+5	
Flurazepam	50	49.9 ± 0.9	+2	0	50.0 ± 0.8	+2	0	49.0 ± 0.8	+2	-2	50.2 ± 0.6	+1	0	51 ± 2	+5	+1	
•	200	196 ± 2	+1	-2	197 ± 3	+1	-2	197 ± 4	+2	-2	197 ± 3	+2	-2	199 ± 5	+3	-1	
R	50	47.8 ± 0.4	+1	0	46.3 ± 0.8	+2	-7	45.4 ± 0.5	+1	-9	46 ± 1	-8	-8	46.0 ± 0.8	+2	-8	
Bromazepam	200	207 ± 1	-4	+3	207 ± 2	+1	+3	205 ± 1	0	+2	200 ± 4	+2	0	201 ± 2	$^{+1}$	0	
	5	5.3 ± 0.1	+3	+6	5.0 ± 0.2	+3	0	5.1 ± 0.2	+3	+1	5.1 ± 0.1	+2	+1	4.99 ± 0.08	+2	0	
Nitrazepam	50	50.5 ± 0.8	+2	+1	49.1 ± 0.5	+1	-2	48.7 ± 0.8	+2	-3	47.9 ± 0.3	+1	-4	48.3 ± 0.7	+1	-3	
1	200	201 ± 1	+1	0	197 ± 1	+1	-1	197 ± 1	+1	-1	197 ± 2	+1	-1	195 ± 2	$^{+1}$	-3	
	5	4.7 ± 0.2	+3	-5	5.0 ± 0.3	+6	-1	4.8 ± 0.6	+13	-4	5.1 ± 0.6	+12	+2	4.8 ± 0.6	+11	-5	
Alpha OH-Alprazolam	50	49.9 ± 0.9	+2	0	48.7 ± 0.9	+2	-3	49 ± 1	+3	-2	50 ± 4	+7	-1	50 ± 0.7	+1	0	
r ··· r ····	200	208 ± 2	+1	+4	201 ± 5	+2	0	199 ± 4	+2	0	202 ± 5	+2	+1	200 ± 4	+2	0	
	5	5.5 ± 0.3	+5	+9	5.1 ± 0.2	+5	+2	4.9 ± 0.4	+8	-2	5.0 ± 0.5	+10	0	5.2 ± 0.1	+3	+3	
Oxazepam	50	49.7 ± 0.5	+1	-1	48 ± 2	+4	-3	48.4 ± 0.3	+1	-3	48.5 ± 0.3	+1	-3	48 ± 1	+2	-4	
Onuzopum	200	202 ± 1	+1	+1	200 ± 4	+2	0	195 ± 5	+3	-2	199 ± 2	+1	-1	194 ± 3	+1	-3	

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds.

Table 6. Or	-instrument	stability	Continued
-------------	-------------	-----------	-----------

		Da	y 1		Da	Day 2		Da	Day 3			ay 4		Day 5		
	Target (ng/mL)	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е	Mean (ng/mL)	CV	%Е
	5	5.4 ± 0.2	+3	+8	5.2 ± 0.3	+5	+5	5.1 ± 0.3	+5	+2	5.1 ± 0.4	+8	+2	4.9 ± 0.3	+6	-3
Clonazepam	50	49.15 ± 0.7	+2	-2	51 ± 2	+3	+1	51 ± 1	+3	+1	49.1 ± 0.9	+2	-2	50 ± 1	+2	+1
	200	200 ± 3	+1	0	203 ± 3	+1	+1	203 ± 1	+1	+1	203 ± 7	+3	+1	201 ± 2	+1	0
	5	5.5 ± 0.3	+5	+10	5.51 ± 0.09	+2	+10	5.8 ± 0.2	+3	+15	5.0 ± 0.3	+6	-1	5.3 ± 0.3	+6	+6
Estazolam	50	49 ± 1	+2	-3	50.2 ± 0.8	+2	0	50.3 ± 0.7	+1	+1	50.6 ± 0.7	+1	+1	50 ± 1	+2	0
	200	200 ± 2	+1	0	201 ± 3	+1	+1	199 ± 2	+1	0	204 ± 2	+1	+2	201 ± 4	+2	0
	5	5.4 ± 0.4	+7	+8	5.6 ± 0.2	+4	+11	5.2 ± 0.2	+4	+3	5.0 ± 0.3	+5	0	5.4 ± 0.3	+5	+8
Lorazepam	50	49 ± 2	+3	-2	50.1 ± 0.9	+2	0	49.6 ± 0.9	+2	-1	49 ± 3	+5	-2	49 ± 1	+3	-2
	200	202 ± 2	+1	+1	201 ± 3	+1	0	200 ± 1	+1	0	198 ± 3	+1	-1	199 ± 4	+2	0
	5	5.0 ± 0.1	+3	0	5.0 ± 0.3	+5	-1	4.8 ± 0.2	+4	-5	4.8 ± 0.2	+5	-4	4.6 ± 0.3	+6	-8
Nordiazepam	50	50 ± 1	+2	0	48.3 ± 0.4	+1	-3	47.8 ± 0.9	+2	-4	48.6 ± 0.7	+1	-3	47 ± 0.8	+2	-6
_	200	203 ± 2	+1	+1	198 ± 3	+1	-1	194 ± 3	+2	-3	196 ± 2	+1	-2	190 ± 3	+2	-5
	5	5.4 ± 0.2	+3	+7	5.1 ± 0.2	+3	+2	5.2 ± 0.2	+2	+4	5.0 ± 0.1	+2	0	5.2 ± 0.2	+4	+5
Alprazolam	50	48.6 ± 0.5	+1	-3	49 ± 1	+3	-2	50.0 ± 0.4	+1	0	49 ± 3	+6	-2	48.5 ± 0.5	+1	-3
	200	197 ± 2	+1	-2	198 ± 3	+1	-1	195 ± 4	+2	-2	193 ± 1	+1	-3	194 ± 4	+2	-3
	5	5.1 ± 0.2	+4	+3	5.1 ± 0.1	+3	+2	4.96 ± 0.07	+2	-1	4.9 ± 0.2	+4	-2	5.0 ± 0.1	+2	+1
Flunitrazepam	50	50.1 ± 0.5	+1	0	49.8 ± 0.7	+1	-1	49.5 ± 0.5	+1	-1	48 ± 1	+3	-3	49.0 ± 0.5	+1	-2
-	200	201 ± 2	+1	+1	199 ± 2	+1	0	199 ± 0.9	0	0	196 ± 2	+1	-2	197 ± 1	+1	-1
	5	4.6 ± 0.2	+5	-9	4.1 ± 0.1	+3	-17	4.1 ± 0.1	+3	-17	4.3 ± 0.2	+4	-13	4.3 ± 0.2	+5	-14
Desalkylflurazepam	50	50.1 ± 0.8	+2	0	51.0 ± 0.8	+2	+2	50 ± 1	+3	0	50.7 ± 0.5	+1	+1	50 ± 2	+3	0
	200	173 ± 3	+2	-14	176 ± 2	+1	-12	175 ± 3	+2	-13	174 ± 3	+2	-14	171 ± 3	+2	-14
	5	5.3 ± 0.1	+3	+5	5.4 ± 0.2	+4	+8	5.31 ± 0.09	+2	+6	5.1 ± 0.3	+5	+3	5.4 ± 0.2	+4	+8
Triazolam	50	49.5 ± 0.6	+1	-1	49.4 ± 0.8	+2	-1	49.8 ± 0.6	+1	0	49 ± 1	+3	-2	50.6 ± 0.9	+2	+1
	200	198.3 ± 0.7	0	-1	199 ± 1	+1	0	199 ± 2	+1	-1	203 ± 3	+2	+1	200 ± 2	+1	0
	5	5.08 ± 0.09	+2	+2	5.12 ± 0.04	+1	+2	5.02 ± 0.07	+1	0	5.0 ± 0.1	+2	0	5.03 ± 0.08	+2	+1
Temazepam	50	49.1 ± 0.3	+1	-2	49.2 ± 0.4	+1	-2	48.8 ± 0.3	+1	-2	49.0 ± 0.6	+1	-2	48.5 ± 0.5	+1	-3
-	200	200.2 ± 0.4	0	0	199 ± 1	+1	0	198 ± 1	+1	-1	202 ± 3	+1	+1	198.0 ± 0.7	0	-1
	5	5.3 ± 0.1	+2	+6	5.2 ± 0.1	+2	+5	2.1 ± 0.1	+2	+2	5.0 ± 0.1	+2	+1	5.0 ± 0.2	+4	0
Diazepam	50	50.4 ± 0.5	+1	+1	50.2 ± 0.3	+1	0	49.4 ± 0.4	+1	-1	50.5 ± 0.6	+1	+1	49.6 ± 0.5	+1	-1
-	200	200.5 ± 0.7	0	0	201 ± 2	+1	0	198 ± 2	+1	-1	202 ± 3	+1	+1	200.1 ± 0.5	0	0
	5	5.3 ± 0.1	+3	+6	4.91 ± 0.03	+1	-2	5.1 ± 0.1	+2	+2	5.0 ± 0.2	+3	-1	5.2 ± 0.1	+2	+5
Prazepam	50	50.6 ± 0.7	+1	+1	47.3 ± 0.6	+1	-5	49 ± 1	+3	-1	49 ± 2	+5	-1	49.2 ± 0.7	+1	-2
-	200	203 ± 2	+1	+1	191 ± 2	+1	-5	200 ± 3	+1	0	194 ± 4	+2	-3	200 ± 3	+2	0

* n = 5 for all measurements. Accuracy was measured as the relative error (%E) from the target concentration. Precision was measured as the CV obtained from 5 replicate measurements. Blood was used as the matrix for all benzodiazepine compounds.

 Table 7. Hydrolysis efficiency.*

Compound	Free-drug Target (ng/mL)	Mean (ng/mL)
Lorazepam	67	57.4
Oxazepam	62	60.1
Temazepam	62	55.4

* 100 ng/mL glucuronide-conjugate control was prepared for each of the analytes in urine.

Table 8. Ion suppression/enhancement at 50 ng/mL.*

i:

Compound	Blood	Urine	Serum	Liver	Lung	Brain	Muscle	Kidney
7-aminoclonazepam	-4.6	-3.4	-5.1	-24.2	-19.4	-13.0	-3.9	-21.7
7-aminoflunitrazepam	-8.2	-4.1	-1.8	-23.6	-20.1	-15.3	2.1	-23.5
Norchlordiazepoxide	-4.2	-10.8	-2.8	-9.9	-18.9	-13.4	0.7	-21.8
Chlordiazepoxide	-5.9	-4.7	-3.4	-15.3	-19.6	-17.7	1.8	-23.5
Alpha OH-Midazolam	-7.3	-5.7	-2.0	-13.4	-7.6	-21.7	2.9	-22.4
Midazolam	-5.4	-6.2	-3.3	-9.1	-20.6	-17.9	4.1	-22.3
Flurazepam	-1.0	-1.6	-0.3	-7.8	-6.5	-12.0	2.2	-7.3
Bromazepam	-6.2	-8.5	-6.1	-22.4	-23.2	-16.9	-6.1	-21.4
Nitrazepam	-3.8	-3.6	-2.3	-13.9	-21.2	-18.6	1.7	-23.4
Alpha OH-Alprazolam	-2.2	0.0	1.1	-14.0	-10.7	-11.7	7.9	-18.3
Oxazepam	-5.3	-3.1	-2.4	-19.9	-13.4	-21.4	-0.5	-16.9
Clonazepam	-5.4	-4.7	-1.1	-17.9	-22.5	-17.8	0.4	-20.0
Estazolam	-1.2	-3.9	1.8	-9.7	-7.7	-14.8	2.7	-17.6
Lorazepam	-4.6	-3.8	-1.4	-10.5	-22.5	-17.0	0.3	-23.8
Nordiazepam	-1.1	0.7	3.8	-8.7	-15.7	-11.5	6.9	-14.5
Alprazolam	-7.0	-3.0	-3.2	-19.2	-24.7	-20.5	-2.7	-20.6
Flunitrazepam	-6.0	-6.1	-2.2	-16.6	-15.9	-21.1	-0.9	-20.5
Desalkylflurazepam	-4.7	-7.1	-4.4	-22.8	-12.6	-20.9	0.4	-21.4
Triazolam	-3.7	-3.1	-1.7	-19.7	-20.7	-19.3	-0.2	-21.9
Temazepam	-6.0	-3.8	-2.2	-14.2	-19.9	-17.6	3.5	-24.2
Diazepam	-7.2	-7.8	-8.0	-23.2	-17.4	-22.6	-1.8	-20.6
Prazepam	-2.2	-3.9	-1.8	-10.2	-15.0	-15.9	-1.3	-16.6

* n = 5 for all measurements. The matrix effect listed here is the ion suppression /enhancement that is not compensated by the deuterated internal standards.

Compound	Blood	Urine	Serum	Liver	Lung	Brain	Muscle	Kidney
7-aminoclonazepam	2.3	-1.7	0.9	0.0	0.0	-0.8	-0.7	0.1
7-aminoflunitrazepam	1.2	0.3	6.7	4.0	3.4	-2.9	4.1	0.6
Norchlordiazepoxide	3.7	-6.6	-1.3	2.2	1.7	-3.8	0.5	-1.1
Chlordiazepoxide	-0.5	-7.6	-0.9	-1.9	1.5	-2.7	0.5	-2.6
Alpha OH-Midazolam	4.6	-7.2	-0.6	1.5	2.7	-4.9	-1.5	2.2
Midazolam	2.0	-7.6	0.9	1.4	1.5	-3.5	0.3	0.8
Flurazepam	-7.7	-20.0	-15.3	1.3	-8.5	-23.8	-16.5	-15.0
Bromazepam	1.4	-5.0	2.9	3.3	-1.1	-0.3	3.1	-1.8
Nitrazepam	0.6	-5.1	2.0	0.9	2.0	-1.4	1.1	0.6
Alpha OH-Alprazolam	2.7	-5.3	-0.5	1.5	1.1	-0.7	2.5	-0.2
Oxazepam	-0.8	-10.9	-4.1	1.2	1.2	-4.2	0.1	-1.9
Clonazepam	-1.6	-7.7	-1.5	0.0	0.6	-2.8	-1.7	-2.4
Estazolam	-0.1	-5.1	0.2	1.5	1.0	-2.9	1.2	1.2
Lorazepam	0.9	-5.4	0.8	4.2	3.3	-2.0	2.9	0.1
Nordiazepam	1.4	-4.8	-1.1	2.4	1.8	-0.1	2.8	0.9
Alprazolam	3.5	-4.5	2.5	1.8	2.8	-3.7	1.9	1.4
Flunitrazepam	0.1	-4.5	0.9	0.8	1.3	-0.5	-0.7	1.1
Desalkylflurazepam	-2.4	-6.0	-4.2	-3.2	-1.4	-2.3	-4.4	-0.7
Triazolam	0.6	-6.2	1.6	0.6	-0.2	-3.7	2.6	-2.0
Temazepam	2.8	-2.9	2.6	4.9	4.1	-0.3	4.7	2.2
Diazepam	0.3	-6.5	-1.5	-0.1	1.0	-3.1	1.1	-2.3
Prazepam	-4.3	-12.5	-4.0	-8.5	-6.0	-16.9	-13.6	-15.3

Table 9. Ion suppression/enhancement at 1000 ng/mL.*

* n = 5 for all measurements. The matrix effect listed here is the ion suppression /enhancement that is not compensated by the deuterated internal standards.

It is common to encounter multiple drugs in a case. Therefore, drug interference needed to be evaluated to determine if common drugs can alter the detection and/or quantification of the 22 benzodiazepine compounds. Drugs commonly encountered in our laboratory were prepared at final concentrations of 5 μ g/mL and the benzodiazepine compounds at 80 ng/mL. The drugs included for interference were acetaminophen, atenolol, atorvastatin, citalopram, dextromethorphan, diphenhydramine, hydrocodone, methamphetamine, naproxen, and sertraline. Five of these controls were analyzed and none suffered qualitative or quantitative interference.

This newly developed method analyzes for 22 benzodiazepine compounds—14 more than our previous GC/MS procedure. With the ability to analyze for 14 additional drugs, our laboratory should not miss any potentially impairing benzodiazepine compounds. This new procedure uses significantly less biological specimen than our previous method (83% less) and, with the single-step extraction and UPLC separation/analysis, the analysis time has been cut by more than 50%. The new method provided a wide LDR and very low LOD for all analytes.

Furthermore, the accuracy, precision, and stabilities for the analytes were exceptional. Due to the violent nature of aviation accidents, our laboratory receives blood in only approximately 60-70% of the cases examined; therefore, our laboratory must routinely rely on other biological specimens for toxicological analysis. During the validation of this method, the UPLC provided superior chromatography in all fluid and tissue specimens tested compared to the GC/MS method. The new method experienced minimal compensated ion-suppression in all postmortem fluids and tissues tested. The Forensic Toxicology Laboratory is currently utilizing this new method for the determination of postmortem distribution of benzodiazepines in fluids and tissues from a large number of aviation cases.

CONCLUSION

The use of the simple "crash-and-shoot" extraction and the UPLC/MS/MS provided a rapid, robust, and sensitive method for the analysis of 22 benzodiazepine compounds and metabolites from 0.5 mL/0.5 g samples. Analysis performed with this new procedure offers several advantages over our previous GC/MS SPE procedure. This new procedure utilizes significantly less specimen, and has a much wider LDR and lower LOQ. The single-step extraction method is very fast compared to the previous solid phase extraction/derivatization protocol which was time consuming and labor intensive. The new chromatographic analysis total run time is 8 minutes. While this could be shortened, we found that the high organic wash at the end of each run was important for chromatographic reproducibility. This new procedure allows our lab to cut the analysis time by more than 50%. This method also offers the ability to identify and quantitate 22 benzodiazepine compounds, which will give the toxicologist a more complete picture of the drugs present and aid in the toxicological interpretation and determination of drug use as well as possible impairment/overdose.

REFERENCES

- 1. Baselt, R.C. (2011) Disposition of toxic drugs and chemicals in man, 9th ed. (Biomedical Publications, Foster City, CA).
- 2. Levine, B. (2013) Principles of forensic toxicology, Fourth ed. (AACC Press, Washington DC).
- 3. Prescribers' digital reference, Available at http://www.pdr.net/.
- 4. Drugs.com, Available at https://www.drugs.com/top200/.
- Smink, B.E., Brandsma, J.E., Dijkhuizen, A., Lusthof, K.J., de Gier, J.J., Egberts, A.C., and Uges, D.R. (2004) Quantitative analysis of 33 benzodiazepines, metabolites and benzodiazepine-like substances in whole blood by liquid chromatography-(tandem) mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci*, 811, 13-20.
- 6. Marin, S.J., Roberts, M., Wood, M., and McMillin, G.A. (2012) Sensitive UPLC-MS-MS assay for 21 benzodiazepine drugs and metabolites, zolpidem and zopiclone in serum or plasma. *J Anal Toxicol*, **36**, 472-476.
- 7. Simonsen, K.W., Hermansson, S., Steentoft, A., and Linnet, K. (2010) A validated method for simultaneous screening and quantification of twenty-three benzodiazepines and metabolites plus zopiclone and zaleplone in whole blood by liquid-liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry. *J Anal Toxicol*, **34**, 332-341.
- 8. Marin, S.J., Coles, R., Merrell, M., and McMillin, G.A. (2008) Quantitation of benzodiazepines in urine, serum, plasma, and meconium by LC-MS-MS. *J Anal Toxicol*, **32**, 491-498.
- 9. Verplaetse, R., Cuypers, E., and Tytgat, J. (2012) The evaluation of the applicability of a high ph mobile phase in ultrahigh performance liquid chromatography tandem mass spectrometry analysis of benzodiazepines and benzodiazepine-like hypnotics in urine and blood. *J Chromatogr A*, **1249**, 147-154.
- 10. Scientific Working Group for Forensic, T. (2013) Scientific working group for forensic toxicology (SWGTOX) standard practices for method validation in forensic toxicology. *J Anal Toxicol*, **37**, 452-474.